From traditional to alternative approach to storage and analysis of flow data

Petr Velan, Martin Zadnik

Introduction

- Network flow monitoring
 - Visibility of network traffic
- Flow analysis and storage enables
 - Maintenance
 - Security
 - Planning

Introduction

- Traditional tools
 - Fixed format of flow data
 - Storage optimization
 - Offline analysis of 5 minutes intervals
- Latest trends
 - Increasing amount of flows
 - Network applications
 - Attacks
- Alternative approach

Motivation

- Trend is to connect anything
 - Mobile devices
 - Internet of Things, Everything

SmartTV

SmartToilet

Motivation

- Migration of applications into clouds
 - Secure network environment supports trustworthy service delivery to end users
- Application-oriented attacks
 - Visibility of application layer

Issues

- Various flow data formats
- Flexibility of data storage
- Response to data queries
- Online analysis and effective data processing

Concept

- Modular collector to support various formats
- Database to store dynamic data
- Column oriented storage for fast queries
- Streaming processing for online analysis

Collector

- IPFIXcol
 - IPFIX protocol support (RFC 7011)
 - Modular architecture

Collector

- IPFIX records from network or local file
 - Private Enterprise Numbers
 - Variable length elements
 - Easily extensible for new elements
- Internal record processing → IPFIX mediator capabilities (RFC 6183)
- Data output:
 - Local storage
 - Further processing
- Primary data storage: FastBit database
- Further data processing using Nemea

- Traditional concept is to store & analyze
 - 5 minutes interval
 - Intensive disk access
- Alternative streaming approach
 - Analysis pipeline of multiple modules
 - Stream data through modules
 - Keep data in memory
- Nemea framework

- Unified interface for efficient intermodule communication
 - Unix sockets (single host)
 - TCP sockets (multiple hosts)
- Data format defined at run time (binary)
- Efficient data transfer
- Blocking/non-blocking
- Connection recovery
- Supervisor

- Simple offline example
 - Stream stored flows
 - Count number of received flows

- Advanced online example
 - IPFIX stream → Nemea stream
 - Multicast stream to modules

- Adding new monitoring/analysis capability
- Use case
 - Heartbleed vulnerability monitoring
 - 1. Extend flow probe with plugin
 - Extend definition IPFIXcol output plugin template
 - 3. Write down analysis module

Performance results

Running detectors (events/month)

- Scanning (520117)

-DoS (324)

– SSH bruteforce (70)

– IP spoofing (permanent)

Amplification attacks (20)

Heartbleed (20 per day)

Anomalies PCA (depends)

- Advantages
 - Near-real time results & actions
 - Continuous seamless processing
 - Keep data in memory
 - Share outputs
 - Scaling
- Disadvantages
 - Memory management
 - Data copies

FastBit DB

- Developed at the Berkeley Lab
- Columnar storage:
 - Element = Column = File
 - Table = Directory
- Flexible data format
- High performance for large data files
 - Augmented by bitmap indexes
- Allows fast value and range queries
- Strings and binary objects processing

FastBit DB

- Command line data manipulation tools
- C, Java and native C++ API
- fbitdump:
 - nfdump-like tool
 - Queries over FastBit database
 - Uses C++ API
 - Network oriented (support for IP addresses, protocols, TCP flags, ...)

Fbitdump

- Comparison with nfdump and SiLK
- SELECT date start, protocol, src IPv6, dst IPv6, src port, dst port, packets, bytes FROM dataset WHERE dst port = 53 AND ip version = 6

Fbitdump

 SELECT src IPv4, packets, bytes, count(*) FROM dataset WHERE ip version = 4 GROUP BY src IPv4 ORDER BY bytes DESC LIMIT 5

FastBit DB

- Lesson learned
 - Columnar databases are good for flows
 - More mature DBs might be considered
- Pros
 - Fast storage access using indexes
 - Easy data manipulation
- Cons
 - Missing efficient aggregation functions
 - Lots of files (table per template)
 - Large indexes

Conclusion

- Alternative flow storage and analysis
 - Columnar DB brings improvement but not solving the problem entirely
- Future work
 - Distributed storage
 - to cope with increasing amount of data
 - to support interactive network forensics
 - Possible way to go is big data processing