Large scale passive monitoring at 10Gbps on commodity hardware

Campus network monitoring and security workshop April 24, 2014 Arne Øslebø, arne.oslebo@uninett.no

UNINETT monitoring infrastructure

Original hardware setup

Active and passive monitoring

Original Appflow architecture

10Gbps challenges

Theoretical packet rate: 14.88 million pps

Number of flows

New Appflow architecture

TILEempower

- Based on TILERA cpu
 - Up to 72 cores
- Pros
 - Good performance
 - Special instructions for packet processing
 - Very good documentation
 - DPI library
- Cons
 - Difficult to program
 - Price

Intel X520 family of NICs

- Designed for virtualization
- Support multi-core processors
 - Hardware based load balancing
- DMA transfer of captured packets
- Hardware counters
- Supports both 1 and 10 Gbps

Drivers for Intel X520

- Standard drivers not very good for passive monitoring
 - Too many interrupts per second
- Packet I/O Engine
 - No longer maintained
 - http://shader.kaist.edu/packetshader/io_engine/
- netmap a novel framework for fast packet I/O
 - Originally developed for FreeBSD
 - Unstable port to Linux
 - http://info.iet.unipi.it/~luigi/netmap/
- PF_RING with DNA
 - Stable and well maintained
 - Multiple applications can access same buffer
 - Not GPL, but free for academic use
 - http://www.ntop.org/products/pf_ring/dna/

Server hardware

- Dell PowerEdge R620
- CPU: Intel Xeon E5-2690, 2.9GHz, 8 cores, hyper-threading
 - Support for second CPU
- 32GB 1600MHz RDIMM
- Intel X520DP
 - Two ports with pluggable SFP+

Packet capture performance

64 bytes packet size, two ports, one core

Gbps	Mpps	Cpu load (%)	Packet drop (%)
0.7	1	1	0
3.3	5	4	0
6.7	10	7	0
10.2	15	13	0
13.9	20	18	0
16.8	25	23	0
20	29.8	31	3.2

Realistic packet size distribution, two ports, 8 cores for each port

Gbps	Mpps	Cpu Load(%)	Packet drop (%)
17.3	5	7	0
20	6.5	9	0

nProbe

- An Extensible NetFlow v5/v9/IPFIX GPL Probe for IPv4/v6
- http://www.ntop.org/products/nprobe/
- Good performance
- Well maintained
- Large user base
- Multi-threaded
 - But recommends running multiple single-thread instances
- IP tagging
 - AS numbers, countries
 - MaxMind: http://dev.maxmind.com/geoip/legacy/geolite/
- Support plugins
 - HTTP, DNS, BGP, SIP/RTP

Adding IP prefix information

Appflowag

Appflowag IPFIX records

Total traffic

- flowStartMilliseconds
- flowEndMilliseconds
- octetDeltaCount
- packetDeltaCount
- deltaFlowCount
- ipVersion

Top source AS number

- flowStartMilliseconds
- flowEndMilliseconds
- octetTotalCount
- packetTotalCount
- deltaFlowCount
- bgpSourceAsNumber
- l7_proto
- ipVersion

261, 1378883700000, 1378883999999, 55430087856, 51440429, 792359, 4 261, 1378883700000, 1378883999999, 3666166884, 3127366, 73943, 6 259, 1378883700000, 1378883999999, 11979801504, 9847245, 29923, 224, 0, 4 259, 1378883700000, 1378883999999, 3600748945, 2413758, 9, 42307, 0, 4

Final Appflow architecture

Nprobe and Appflowag performance

Gigabit per second

Total CPU usage 8 cores for nProbe, 1 for appflowag

Packets per second

Flows per second

Total processing (19 probes)

Current status and future work

- 30 new monitoring probes being deployed
 - 19 in full production
- Appflow in full production
 - Want to improve unknown traffic
 - Customers wants to add their own prefixes to classify traffic
- Activate nProbe plugins
 - SIP/RTP, DNS
- Other QoS measurements
 - Packet reordering, jitter ...
- Software will be released
 - http://software.uninett.no/

