
Harvesting Logs and Events Using
MetaCentrum Virtualization Services

Radoslav Bodó, Daniel Kouřil
CESNET

Campus network monitoring and security workshop
Prague 2014

Agenda

● Introduction

● Collecting logs

● Log Processing

● Advanced analysis

● Resume

Introduction

● Status
○ NGI MetaCentrum.cz

■ approx. 750 worker nodes
■ web servers
■ support services

● Motivation
○ central logging services for

■ security
■ operations

Goals

● secure and reliable delivery
○ encrypted, authenticated channel

● scalability
○ system handling lots of logs on demand
○ scaling up, scaling down

● flexibility
○ system which can handle "any" data ...

Collecting logs

● linux + logging = syslog
○ forwarding logs with syslog protocol

■ UDP, TCP, RELP
■ TLS, GSS-API

● NGI Metacentrum
○ Debian environment
○ Kerberized environment

■ rsyslogd forwarding logs over GSS-API protected channel

rsyslogd shipper

● omgssapi.so -- client

○ forwarding is action
■ action queue must be non direct
■ queue must be limited
■ full queue must not block main queue

rsyslogd server

● imgssapi.so -- server

○ nothing really special
■ listener
■ per IP layout
■ service logs

rsyslogd GSS patches

● original GSS-API plugins are not maintained since 3.x
○ plugin does not reflect internal changes in rsyslogd >> occasional

segfaults/asserts
■ not quite nice even after upstream hotfix

● no more segfaults, but SYN storms (v5,v6,?v7,?v8)

● a new omgssapi based on
○ old one + actual omfwd (tcp forward)
○ contributed to public domain but not merged yet

■ we'll try to push it again into v8

rsyslogd testbed
● development of multithreaded application working with strings and

networking is error prone process .. everytime
○ virtual testbed used to test produced builds

rsyslogd wrapup

● in production about a 2 years

● approx. 90% nodes coverage (700 nodes)

● 50 - 100GB per month
○ 2GB compressed with 7zip

● monitoring
○ nagios
○ cron scripts

Log processing

● why centralized logging ?
○ having logs on single place allows us to do

centralized do_magic_here

● classic approach
○ grep, perl, cron, tail -f

Log processing

● classic approach
○ grep, perl, cron, tail -f
○ alerting from PBS logs

● jobs_too_long

● perl is fine but not quite fast for 100GB of data
○ example:

■ search for login from evil IPs

● for analytics a database must be used
○ but planning first ...

The size

● the grid scales
○ logs growing more and more

■ a scaling DB must be used

● clustering, partitioning
○ MySQL, PostgreSQL, ...

The structure strikes back

● logs are not just text lines, but rather a nested structure

● logs differ a lot between products
○ kernel, mta, httpd, ssh, kdc, ...

● and that does not play well with RDBMS (with fixed data
structures)

LOG ::= TIMESTAMP DATA
DATA ::= LOGSOURCE PROGRAM PID MESSAGE
MESSAGE ::= M1 | M2

A new hope ?

● NoSQL databases
○ emerging technology
○ cloud technology
○ scaling technology
○ c00l technology

● focused on
○ ElasticSearch
○ MongoDB

● ElasticSearch is a full-text search engine
 built on the top of the Lucene library

○ it is meant to be distributed
■ autodiscovery
■ automatic sharding/partitioning,
■ dynamic replica (re)allocation,

■ various clients already

● REST or native protocol
○ PUT indexname&data (json documents)

○ GET _search?DSL_query...
■ index will speed up the query

● ElasticSearch is not meant to be facing public world
○ no authentication
○ no encryption

○ no problem !!

rsyslog testbed Private cloud

● a private cloud has to be created in the grid
○ cluster members are created as jobs
○ cluster is interconnected by private VLAN
○ proxy is handling traffic in and out

Turning logs into structures

● rsyslogd
○ omelasticsearch, ommongodb

● Logstash
■ grok
■ flexible architecture

LOG ::= TIMESTAMP DATA
DATA ::= LOGSOURCE PROGRAM PID MESSAGE
MESSAGE ::= M1 | M2 | ...

logstash -- libgrok

● reusable regular expressions language and
parsing library by Jordan Sissel

Grokked syslog

logstash -- arch

● event processing pipeline
○ input | filter | output

● many IO plugins

● flexible ...

Log processing proxy

● ES + LS + Kibana
○ ... or even simpler (ES embedded in LS)

btw Kibana

● LS + ES web frontend

Performance

● Proxy parser might not be enough for grid logs ..
○ creating cloud service is easy with LS, all we need is a spooling

service >> redis

● Speeding things up
○ batching, bulk indexing

○ rediser

■ bypassing logstash internals overhead on a hot spot (proxy)

● Logstash does not implement all necessary features yet
○ http time flush, synchronized queue ...

■ custom plugins, working with upstream ...

Cloud parser

LS + ES wrapup

● upload
○ testdata

■ logs from January 2013
■ 105GB -- cca 800M events

○ uploaded in 4h
■ 8 nodes ESD cluster
■ 16 shared parsers (LS on ESD)
■ 4 nodes cluster - 8h

○ speed vary because of the data (lots of small msgs)
■ during normal operations a large cluster is not needed

LS + ES wrapup

● Speed of ES upload depends on

○ size of grokked data and final documents,
○ batch/flush size of input and output processing,
○ filters used during processing,
○ LS outputs share sized queue which can block processing (lanes:),
○ elasticsearch index (template) setting.
○ ...
○ ...
○ tuning for top speed is manual job (graphite, ...)

LS + ES wrapup

● search speed ~

Advanced log analysis

● ES is a fulltext SE, not a database
○ but for analytics a DB is necessary

● Document-Oriented Storage
○ Schemaless document storage

○ Auto-Sharding

○ Mapreduce and aggregation framework

Advanced log analysis

● MongoDB
○ Can be fed with grokked data by Logstash

■ sshd log analysis

MapReduce

Mongomine
● on the top of created collection

○ time based aggregations (profiling, browsing)
○ custom views (mapCrackers)

■ mapRemoteResultsPerDay.find({time= last 14days, result={fail}, count>20})

○ external data (Warden, torlist)

Mongomine

● Logstash + MongoDB application
○ sshd log analysis

■ security events analysis
● python bottle webapp
● Google Highcharts

■ automated reporting
● successful logins from

○ mapCrackers
○ Warden
○ Tor lists

Mongomine

Mongomine wrapup

● testcase
○ 20GB -- January 2013
○ 1 MongoDB node, 24 CPUs, 20 shards
○ 1 parser node, 6 LS parsers

● speed
○ upload -- approx. 8h (no bulk inserts :(
○ 1st MR job -- approx. 4h
○ incremental MR during normal ops -- approx. 10s

Overall schema
● rsyslogd + testbed
● LS + ES
● LS + Mongomine + Ext

Virtual Machine Walkthrough

ESB EGI Technical forum 2013

http://home.zcu.cz/~bodik/metasw/esbegitf/

Other Applications - Wardenweb2
{

"priority":null,
"source":"222.133.237.62",
"target_proto":"TCP",
"hostname":"nfsen.ics.muni.cz",
"service":"honeyscan",
"note":null,
"attack_scale":"1",
"detected":"2014-04-24 21:04:25",
"timeout":null,
"source_type":"IP",
"type":"probe",
"id":"57341436",
"target_port":"8080"

}

Other applications - wardenweb2

last 12 hours before yesterday’s brewery event

Other applications - wardenweb2

exclude top port 0 >> peak gone

Other applications - wardenweb2

include top port 0 >> just 2 sensors left

Other applications - wardenweb2

include top collector >> peak gone

Other applications - wardenweb2

include the other >> peak >> icmp scan

Other applications - fail2ban + geoip

beside groking, logstash can do other things in the pipeline
>> geoip resolution

besi

Other applications - maildir screening

Other applications - maildir screening

Resume

● It works
○ system scales according current needs
○ custom patches published
○ solution is ready to accept new data

■ with any or almost no structure

● Features
○ collecting -- rsyslog
○ processing -- logstash
○ high interaction interface -- ES, kibana
○ analysis and alerting -- mongomine

Questions ?

now or …

https://wiki.metacentrum.cz/wiki/User:Bodik

http://bit.ly/RQ0LML

mailto:bodik@civ.zcu.cz
mailto:kouril@ics.muni.cz

