Taming network ops complexity

Jean Benoit Université de Strasbourg 2014/04/25

Roadmap

- Approach
- ► ITIL and Visible Ops
- Implementation

Approach

- Goal: make your network reliable
- Combine those 3 practices
 - Change monitoring
 - Asset Inventory
 - Automated deployment
- This approach comes from
 - Putting those 3 things in practice
 - Thinking about how and why they work
- ▶ ITIL ?

Road map

- Approach
- ► ITIL and Visible Ops
- Implementation

ITIL Core (v3)

"ITIL manuals are like kryptonite to enthusiasts"

BOFH, episode 34

ITIL Core (v3)

- Set of best practices
 - 5 books, over 1500 pages in total
- Lots of interesting concepts
 - Configuration management, Change management, Capacity management etc.
- But difficult to apply
 - complex: lots of roles, processes, risk of creating silos etc.
 - ITIL is non-prescriptive; it doesn't tell you where to start nor what is important

Another approach: The Visible Ops Handbook

- 100 pages
- Concrete examples
- 4 phases
- Origin of the book :
 - Peculiar use of Tripwire

Origin of Visible Ops: Tripwire

- Tripwire is a security tool that checks the integrity of a system
 - Computes checksum of all files
 - Compare to reference values (baseline is established when the system is installed)
 - Detect changes
- ▶ If a change is detected, Tripwire raises an alert

Tripwire → Visible Ops

Modified object name /etc/passwd-Expected Observed Property: Inode Number 2099877 2101089 Size 2714 2772 Modify Time Sun Nov 18 13:32:14 2012 Thu Dec 13 20:40:28 2012 CRC32 C20ayv AdbhBT MD5 B4D5f3WjCmExJ+clnPNB5u B8wE3wV3ojnztY7Vp4XUn6 Modified object name: /etc/shadow-Property: Expected Observed 1 4 1 Size 1762 1887 Modify Time Thu Nov 1 19:23:18 2012 Sun Nov 18 13:32:22 2012 CRC32 BHLRTD DsS9ba MD5 Df9YtwPJbrd2TLZcajWpVY BU9hvSUSEUj39LGpRQGmfj Rule Name: Security Control (/etc/passwd) Severity Level: 66 Modified Objects: 1 Modified object name: /etc/passwd Property: Expected Observed 1 4 1 Inode Number 2101057 2101094

Tripwire → Visible Ops

- ▶ Gene Kim, author of Tripwire wonders why:
 - Tripwire is not used as a security tool by some companies...
 - ... but is used to increase IT services reliability
- ▶ When he compared different companies in this area, he noticed that some companies are more efficient than others
- ▶ The most efficient ones have specific practices
 - Change detection, Asset inventory, Automated deployment
- This lead him to the writing of "Visible Ops"

The 4 phases of Visible Ops

- 1. Stabilize the patient
- 2. Inventory / catch fragile artifacts
- 3. Build a library of repeatable builds
- 4. Continual improvement

Phase 1: stabilize the patient

Phase 1: stabilize the patient

- List critical systems generating the greatest amount of unplanned work
- Protect them against uncontrolled changes
 - New policy : no changes on those systems without approval
 - Publish this new policy

Phase 1: stabilize the patient

- "Trust but verify"
 - Sysadmin and netadmin can apply changes
 - Changes are monitored
- Changes are visible
 - Monitoring and detecting changes = catalyst to understand and resolve incidents
 - → **Analyzing** the change logs often leads to find the root cause of the incident
- Maintenance window

Phase 2: "catch & release"

Phase 2: "catch & release"

- ▶ Rangers in national parks catch all the animals, weigh them, tag them, and release them
- ▶ Do the same with servers, network equipments, applications, etc.
- Questions: what is it used for? What happens if it crashes? Is it backed up? Dependencies? Etc.
 - → Detailed asset inventory

Phase 3: library of repeatable builds

Phase 3: library of repeatable builds

- Rebuilding is simpler than repairing
 - Automate deployment
 - "Bare-metal build"
- Deployment: assembling standard components
 - Web server: OS component + Apache component
 - DB server: OS component + Mysql component
- Deployment = code
 - Factorization, Versioning, Tests etc.

Phase 4: continual improvement

- Measure
- Extend the perimeter

Road map

- Approach
- ► ITIL and Visible Ops
- Implementation

How to apply this on a campus network?

- In this context, ops teams are small; a more pragmatic approach is needed
- Change monitoring with change events broadcasted to sysadmin/netadmin
- Federation of inventory systems
- Targeted deployment automation

Change monitoring sources

- Network change monitoring: use RANCID
- Use GIT for server change monitoring:

```
cd /etc ; git init ; git add . ; git commit -m 'premier commit'
```

Every minute in cron:

```
(cd /etc; git status; git diff) | keepstate | mail sysadmins
```

Change monitoring destinations

- ▶ When a change is detected, it is sent
 - To the sysadmins or netadmins interested in receiving it
 - To Nagios
- In Nagios, a service named "change" is defined for every hosts:
 - Passive check
 - Volatile service
 - Output contains URL of change diff

Effects of change

- "Great, I can see what others are changing!"
- "Damn, others can see what I am changing!"
- Rounds of beer/croissants
 - If an unplanned change failed
 - Payed for by the person who did it

- This leads everybody to announce and prepare changes
 - Maintenance window
 - Greater confidence
- Cultivate autonomy and expertise

Federating inventory systems

- ▶ There will always be several referential data sources
 - Network inventory
 - Server inventory
 - Other data : network prefix, contacts
- ▶ Is it possible to centralize all this data (CMDB) ?
 - Complex and costly, difficult to keep up to date
- ▶ Be minimalist: what is the **least** amount of referential data needed?

Federating inventory systems

- Required functions : enumerate inventory items, tag items
- Use existing tools and all available sources
 - GLPI, configuration management software, RANCID, etc.
 - a naming scheme in the DNS (campus-west-core-sw01 etc.)
- Those tools make up your Infrastructure Information System
- Interactions between tools : loose coupling, web services

Targeted automated deployment

- Targets
 - Critical servers, clusters of servers
 - Network equipments
- Write deployment script/recipes
 - Takes more time but has a quick ROI
 - Result is repeatable and testable
 - What was done by hand before is now documented in code
 - Traceability of configuration changes with versioning

Automated deployment platform

- Use an existing configuration management tool:
 - Chef, Puppet, Ansible etc.
- Manageable server resources : file, template, package...
- Recipe = function
 - reusable

Network automated deployment platform

- 2 approaches
 - Full configuration: network model pushed on equipments
 - Need out-of-band management
 - Partial configuration: modify non-critical part of the configuration
- Puppet, Chef, Ansible... can be used on Juniper
 - Netconf
- Netmagis
- Manageable network resource : port, vlan ...
- Unstructured: custom scripts + Rancid to send commands

Automated deployment recommendations

- Extend automated deployment gradually
- Peer-programming of recipes/scripts
- Write infrastructure tests
 - Test frameworks (Cucumber for example)
- Configure it everywhere even if the device is not deployed automatically
 - Deploy the agent on all servers:
 - Manage configurations for ssh, syslog, monitoring etc.

Associating the 3 practices

- ▶ The 3 practices are often associated with each other
- Asset inventory is the foundation
 - many automations are based on it
- Inventory can provide a list of servers and network equipment filtered by a criteria (location, type etc.)
 - To target automated deployment
 - Test if change detection software is deployed
- Deployment can update inventory with data
 - Redeploy app with a new database server name
 - Creates an up to date dependency in the inventory
- Change monitoring detects configuration drift
 - Integrate configuration diff into deployment recipe

Associating the 3 practices

- Change monitoring and inventory facilitate incident resolution
 - Explore change logs close to incident location
 - Expand investigation in concentric circles using inventory
- Change monitoring and automated deployment make restoring the service quicker and easier
 - You know exactly what has changed
 - Re-deploy the elements that have been modified

Associating the 3 practices

- Network equipment life-cycle management
- Inventory is key
- Initial deployment is scripted with configuration templates
- Populates the monitoring system automatically
- See Campus Best Practice document Referential Data and Network Management Automation

Conclusion

- Understand the concepts
 - Read ITIL, Visible Ops etc.
- Confront concepts and reality = practice
- Maintain your infrastructure Information System
 - Foundation
- Monitor changes
 - To understand what happened
- Automate deployment
 - To stabilize infrastructure